Raman Spectroscopy

Latest News


Latest Videos


More News

Unsolved Problems in Spectroscopy - Part 1

Inter-instrument variability is a major obstacle in multivariate spectroscopic analysis, affecting the reliability and portability of calibration models. This tutorial addresses the theoretical and practical challenges of model transfer across instruments. It covers spectral variability sources—such as wavelength shifts, resolution differences, and line shape variations—and presents key standardization techniques including direct standardization (DS), piecewise direct standardization (PDS), and external parameter orthogonalization (EPO). We discuss the underlying mathematics of these approaches using matrix notation and highlight limitations that must be considered for reliable universal calibration.

Mini-Tutorial: Raman fingerprinting and machine learning classification of pesticides © marritch -chronicles-stock.adobe.com

Using a custom-built 785 nm Raman instrument, a recent study identified 14 pesticides and employed multivariate and machine learning techniques—particularly Random Forests (RF)—to automate classification. Readers will learn practical steps in spectral acquisition, spectral comparison across wavelengths, data preprocessing, and implementing machine learning models for real-world chemical monitoring (1).

The 2025 Emerging Leader in Molecular Spectroscopy: Lingyan Shi

Spectroscopy's 2025 Emerging Leader in Molecular Spectroscopy is Lingyan Shi of the University of California, San Diego. Shi’s research focuses on developing and applying molecular imaging tools, including stimulated Raman scattering (SRS), multiphoton fluorescence (MPF), fluorescence lifetime imaging (FLIM), and second harmonic generation (SHG) microscopy.

Unsolved Problems in Spectroscopy - Part 2

This tutorial addresses the critical issue of analyte specificity in multivariate spectroscopy using the concept of Net Analyte Signal (NAS). NAS allows chemometricians to isolate the portion of the signal that is unique to the analyte of interest, thereby enhancing model interpretability and robustness in the presence of interfering species. While this tutorial introduces the foundational concepts for beginners, it also includes selected advanced topics to bridge toward expert-level applications and future research. The tutorial covers the mathematical foundation of NAS, its application in regression models like partial least squares (PLS), and emerging methods to optimize specificity and variable selection. Applications in pharmaceuticals, clinical diagnostics, and industrial process control are also discussed.