September 4th 2024
Spectroscopic analytical techniques are crucial for the analysis of agricultural products. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting important quality parameters, adulteration, insects and rodent infestation, ripening, and other essential applications are discussed.
September 4th 2024
An Adventure with Light and Reflections on Science
September 2nd 2021Working at the frontiers of biotechnology, fiberoptics, lasers technique, and molecular spectroscopy, Tuan Vo-Dinh of Duke University has developed multiple sensor technologies for medical research and diagnostics. Throughout this work, Vo-Dinh and his research colleagues have brought spectroscopy to biomedical applications. In this second recent interview, Vo-Dinh talks about his research work and philosophy.
An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.
Raman Spectroscopy: A Key Technique in Investigating Carbon-Based Materials
August 1st 2021This article explains the key steps of using Raman technology to investigate carbon and carbon-based materials—such as carbon nanotubes, graphene, and carbon fibers and composites—as well as the process of analyzing the spectra.
Using confocal Raman imaging and other advanced measurement techniques, we study the localized strain characteristics of tungsten diselenide (WSe2), an important nanomaterial used for optoelectronic device applications.
Tracking Bioactive Compounds Produced by Genetically Engineered Yeast Cells Using Raman Imaging
June 1st 2021Using Raman imaging, wild-type and engineered yeast cells were compared for their ability to produce bioactive compounds. Raman imaging microscopy is able to visualize locales, relative abundance, and production efficiencies of biologically active compounds for the individual yeast cells.
A Dual Nanostructured Approach to SERS Substrates Amenable to Large-Scale Production
June 1st 2021SERS can amplify Raman signals, but to make the technique practical for industrial use, large quantities of substrate are needed. The approach described here could enable cost-effective, reproducible manufacturing of SERS substrates at large scale.
Raman Spectroscopy as a Tool for Rapid Feedback of Perovskite Growth Crystallinity and Composition
June 1st 2021Perovskites are known to be useful for fabrication of solar cells, and their crystalline structure plays an important role in their electronic properties. Here, we show how Raman analysis is able to confirm the presence of the required crystalline phase for solar cell production.
Terahertz Spectral Characterization of Plasma Spray–Deposited Nickel Film on an Alumina Cylinder
April 1st 2021Plasma spray–deposited metal films are used in many industrial applications. This study shows how high resolution terahertz time-domain spectroscopy (THz-TDS) can be used to analyze and characterize such films.
Combined Raman and Photoluminescence Imaging of Two-Dimensional WS2
March 1st 2021Raman and photoluminescence spectroscopy were combined with imaging to examine the spatial variation of solid-state structure and electronic character of two-dimensional (2-D) tungsten disulfide (WS2) crystals, which represent a family of new inorganic 2-D materials.
Raman measurements of chromite minerals demonstrated that chromium content could be accurately determined, supporting a possible application of portable Raman devices on Earth or in space for mineral analysis of asteroids and planets.
Assignment of Raman Bands of a Set of Biopolymers with Small Increases in an Added Functional Group
February 1st 2021Raman spectra were measured in combination with 2D-COS analysis to understand how the addition of propyl side groups to a biopolymer backbone influences the structure of the polymer at the atomic level.
Using Raman Spectroscopy for the Characterization of Zeolite Crystals
January 1st 2021Zeolites are the most-used catalyst in industry. Synthesizing tailor-made zeolites is hampered by a poor understanding of how zeolite crystals actually form in solution. Scott M. Auerbach of the University of Massachusetts at Amherst is addressing this challenge with Raman spectroscopy.
Raman Spectroscopy Analysis of Minerals Based on Feature Visualization
November 1st 2020The advantages of machine-learning methods have been widely explored in Raman spectroscopy analysis. In this study, a lightweight network model for mineral analysis based on Raman spectral feature visualization is proposed. The model, called the fire module convolutional neural network (FMCNN), was based on a convolutional neural network, and a fire-module was introduced to increase the width of the network, while also ensuring fewer trainable parameters in the network and reducing the model’s computational complexity. The visualization process is based on a deconvolution network, which maps the features of the middle layer back to the feature space. While fully exploring the features of the Raman spectral data, it also transparently displays the neural network feature extraction results. Experiments show that the classification accuracy of the model reaches 0.988. This method can accurately classify Raman spectra of minerals with less reliance on human participation. Combined with the analysis of the results of feature visualization, our method has high reliability and good application prospects in mineral classification.
Atline Analysis of Commercial Graphene Products with Raman Spectroscopy
November 1st 2020Graphene exhibits special properties, such as high strength and high electrical and thermal conductivity and as such is highly desirable for key electronic components. A new Raman spectroscopy sampling technique has been applied to the characterization of batches of graphene that provides a simple, at-line method for obtaining key product data.
Making Industrial Raman Spectroscopy Practical
November 1st 2020Raman spectroscopy is a valuable process analytical technology (PAT) for many applications across multiple industries, as a result of its many advantages, such as molecular specificity, ability to be directly coupled to a reaction vessel, and compatibility with solids, liquids, gases, and turbid media.
Raman Spectroscopy: Bringing Inline Analysis to Production
November 1st 2020New Raman spectroscopy applications are emerging in non-traditional fields because of advances in easy-to-use commercial Raman spectroscopy instrumentation. With improvements in lasers, optics, and detectors, Raman spectroscopy has developed into a powerful measurement solution for manufacturing and quality control applications.