Raman Spectroscopy

Latest News


Man holding up a gold trophy cup | Image Credit: © Jag_cz - stock.adobe.com.

This year’s Emerging Leader in Molecular Spectroscopy Award recipient is Joseph P. Smith of Merck, whose research is significantly influencing pharmaceutical process development through his work in various spectroscopic techniques, biocatalysis, protein engineering, vaccine production, and advanced data analysis methods.

A modern perovskite high performance solar cell ©  AA+W - stock.adobe.com

Researchers at King Saud University have successfully improved the efficiency of methylammonium lead triiodide (MAPbI3) perovskite solar cells by doping them with Germanium Sulfide (GeS). By enhancing the crystalline quality and surface morphology of the perovskite layer, the team achieved a power conversion efficiency (PCE) of 17.46%, making this doping technique a promising method for improving solar cell performance.

The Latest Spectroscopic Research in Agriculture Analysis ©  Dzikir - stock.adobe.com

Spectroscopic analytical techniques are crucial for the analysis of agricultural products. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting important quality parameters, adulteration, insects and rodent infestation, ripening, and other essential applications are discussed.

AI-Powered Spectroscopy in Rapid Food Analysis ©  Lila Patel - stock.adobe.com

A recent study reveals on the challenges and limitations of AI-driven spectroscopy methods for rapid food analysis. Despite the promise of these technologies, issues like small sample sizes, misuse of advanced modeling techniques, and validation problems hinder their effectiveness. The authors suggest guidelines for improving accuracy and reliability in both research and industrial settings.

SARS-CoV-2, 3d rendering of spike protein (blue) ©  Naeblys - stock.adobe.com

Researchers at Budapest University of Technology and Economics have developed a novel method for real-time monitoring of the protein purification process using Raman and near-infrared (NIR) spectroscopy. Their study compares the effectiveness of these two spectroscopic techniques in tracking the removal of imidazole, a process-related impurity, during the purification of the SARS-CoV-2 spike protein's receptor-binding domain (RBD).

Spaceman and planet, human in space concept | Image Credit: © Sergey Nivens - stock.adobe.com.

A trip to the Lyndon B. Johnson Space Center served as a reminder of the importance of space exploration and the key role spectroscopy plays in this industry.

The Search for signs of extraterrestrial life in space ©  Aleksandra - stock.adobe.com

Researchers from Humboldt-Universität zu Berlin and the German Aerospace Center (DLR) have developed a cutting-edge fiber-dispersive Raman spectrometer (FDRS) capable of detecting low-density biological matter in space. By combining a single-photon detector with a dispersive optical fiber element, the team achieved a breakthrough in in-situ Raman spectroscopy, promising unprecedented sensitivity and reliability in the search for extraterrestrial rudimentary life.