Application Notes: General
The Effect of Heat Exposure on BPA and Phthalate Content in Commercial Bottled Water
May 8th 2024This study aimed to assess the levels of phthalates and bisphenol A (BPA) in various popular bottled waters compared to tap water. Additionally, it investigated whether exposure to high temperatures, akin to those in a car during summer, would elevate these levels. Using GC/MS analysis, samples were examined. Results showed that phthalates and BPA were either absent or well below safety thresholds in all bottled and tap water samples. Moreover, heating did not significantly affect phthalate concentrations, and BPA was undetectable in all samples.
Spex Speaks Science: Soil and Contamination
May 8th 2024The science and art of gardening and agriculture is part passion, part luck and a lot of chemistry. In this podcast, we will take a look at the science of soil and how chemistry can affect the growth and health of plants. We will also take a look at sources of potential contamination in gardens and how those contaminants can be tested and remediated. Hosted by Patricia Atkins, Manager, Global Product at Spex®.
The Analysis of Laboratory and Consumer Water Sources for the Presence of BPA and Phthalates
May 8th 2024Bottled water has evolved from a trendy luxury to a global consumer staple, with significant growth projected by 2012. In the U.S., consumption has soared, with safety concerns and substitution driving its popularity. Developing nations also rely on bottled water for safety. This study aims to address debated issues surrounding BPA and phthalate exposure in consumer water sources: 1. Are BPA and phthalates present in bottled water? 2. Does exposure to high temperatures increase leaching of BPA or phthalates? 3. Are levels in municipal or filtered water significantly different from bottled water?
Single Cell and Microplastic Analysis by ICP-MS with Automated Micro-Flow Sample Introduction
April 25th 2024Single cell ICP-MS (scICP-MS) is increasingly seen as a powerful and fast tool for the measurement of elements in individual cells, mainly due to the high sensitivity and selectivity of ICP-MS. Analysis is performed in the same way as single nanoparticle (spICP-MS) analysis, which has become a well-established technique for the analysis of nanoparticles and particles.
Hot News on Agilent LDIR, New Developments, and Future Perspective
April 25th 2024Watch this video featuring Darren Robey and Dr. Wesam Alwan from Agilent Technologies to gain insights into the future trends shaping microplastics research and the challenges of their characterization. Discover the essential components necessary for accurate microplastics analysis and learn how the Agilent 8700 LDIR system addresses these challenges. Offering rapid and precise analysis capabilities, along with easy sample preparation methods that minimize contamination, the Agilent 8700 LDIR system is at the forefront of advancing microplastics research.
Accurate and robust analysis of challenging environmental samples for regulatory compliance
April 25th 2024This application note discusses how the adverse effects of sample matrix can be circumvented with an analytical workflow that includes robust ICP-MS instrumentation offering comprehensive yet simplified analysis of samples containing high dissolved solids such as soil digests, wastewater and solid wastes. The data presented in this application note was generated over 12 hours with over 160 samples covering soil extracts and a variety of water samples.
Analysis of drinking water in compliance with EPA Method 200.8, Revision 5.4
April 25th 2024This application note describes the analytical workflow developed for the analysis of water samples over an extended period using the latest innovations in ICP-MS instrumentation. The innovations specifically highlighted in this app note are the next generation Argon Gas Dilution accessory, which simplifies the analysis of high matrix samples allowing direct analysis without prior manual diution; the HAWK consumables and maintenance assistant within the Qtegra ISDS software; the new Easy-click compact (ECC) peristaltic pump; and the new Thermo Scientific autosampler, the iSC-65 autosampler.
The World of Microplastics Up to Date – an Overview
April 23rd 2024Watch this 20-minute educational video by Andreas Kerstan, Agilent Product Specialist in molecular spectroscopy, to gain a comprehensive update on the microplastics landscape and the environmental concerns related to them. Discover the current challenges in microplastics characterization and how Agilent innovative solutions and techniques, including FTIR, LDIR, GC/MS, and ICP-MS, are addressing these issues head-on.
Advancing Research of Plastics in the Environment Using the Agilent Cary 630 FTIR Spectrometer
April 10th 2024Plastic pollution has become a high-priority area of study in recent years due to the increasing prevalence of plastics in the environment. Currently, researchers have a limited understanding of the impact of plastic pollution on human health, how it affects wildlife and their habitats, and its long-term effects on the environment. An important step in overcoming this pressing global environmental issue is the advancement of research relating to the identification of plastic waste and microplastic particles.
Fast and Simple Material Identification of Plastic Debris Using FTIR Spectrometry
April 10th 2024During the invention, development, and early production phases of synthetic plastics, only small quantities were produced, and dealing with waste-plastic was relatively controllable. Over the last few decades, however, plastic production has been growing faster than the production of any other materials. Nowadays, an estimated 400 million tons of plastic waste is produced every year, and a large portion of this waste ends up in the natural environment.
5 Ground-Breaking Uses of ICP-QQQ
April 4th 2024In the years since Agilent released the first triple quadrupole inductively coupled plasma mass spectrometer (ICP-QQQ), the company’s instruments have been used for several novel applications. Case studies at Ghent University and an interview with Source Certain help demonstrate the full potential of this technology.