Infrared (IR) Spectroscopy

Latest News


AI and spectroscopy reveal the secret life of molecules © Maksudul Islam Nahid-chronicles-stock.adobe.com

A leading-edge review led by researchers at Oak Ridge National Laboratory and MIT explores how artificial intelligence is revolutionizing the study of molecular vibrations and phonon dynamics. From infrared and Raman spectroscopy to neutron and X-ray scattering, AI is transforming how scientists interpret vibrational spectra and predict material behaviors.

AI-driven sensors detect irregularities in electric vehicle systems © panu101-chronicles-stock.adobe.com

A new study by researchers from Palo Alto Research Center (PARC, a Xerox Company) and LG Chem Power presents a novel method for real-time battery monitoring using embedded fiber-optic sensors. This approach enhances state-of-charge (SOC) and state-of-health (SOH) estimations, potentially improving the efficiency and lifespan of lithium-ion batteries in electric vehicles (xEVs).

Beach and Village of Calella, Costa del Maresme, Catalonia, Mediterranean Sea, Spain. | Image Credit: © travelpeter - stock.adobe.com

In a recent study published in Marine Pollution Bulletin, a team of researchers from several Spain and Portugal universities and institutions (Rovira i Virgili University, Universitat de Barcelona, University of Porto, and Institut d'Investigació Sanitaria Pere Virgili (IISPV) assessed microplastic (MP) contamination along the Mediterranean coastline.

Imagining undiscovered exoplanets orbiting a distant nebula star system © Firman Dasmir-chronicles-stock.adobe.com

Recent advancements in exoplanet detection, including high-resolution spectroscopy, adaptive optics, and artificial intelligence (AI)-driven data analysis, are significantly improving our ability to identify and study distant planets. These developments mark a turning point in the search for habitable worlds beyond our solar system.

Stunning Night View of the W. M. Keck Observatory in Mauna Kea, Hawaii © Arnada -chronicles-stock.adobe.com

Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.

McDonald Observatory is an astronomical observatory located in Fort Davis, Texas © Kirk-chronicles-stock.adobe.com

Astronomers have made a significant leap in the study of exoplanet atmospheres with a new ground-based spectroscopic technique that rivals space-based observations in precision. Using the Exoplanet Transmission Spectroscopy Imager (ETSI) at McDonald Observatory in Texas, researchers have analyzed 21 exoplanet atmospheres, demonstrating that ground-based telescopes can now provide cost-effective reconnaissance for future high-precision studies with facilities like the James Webb Space Telescope (JWST) (1-3).

Illustration of DNA or water molecules like structure connected. Generated by AI. | Image Credit: © PrimeOrdial

In the fifth installment of “The Big Review” of infrared (IR) spectral interpretation, we review the spectroscopy of functional groups containing C-O bonds, discuss alcohols and phenols, and see how to use IR spectroscopy to distinguish these alcohols from each other. We then discuss ethers and see how to use IR spectroscopy to distinguish the three different types from each other.

Whey protein scoop. Sports nutrition. | Image Credit: © Nick Starichenko - stock.adobe.com

A study published in the International Journal of Dairy Technology by lead author Mark A. Fenelon and his team at Teagasc Food Research Centre and University College Dublin demonstrates that ATR-FT-IR spectroscopy can effectively monitor heat-induced structural changes in milk proteins and colloidal calcium phosphate, offering valuable insights for optimizing dairy product stability and quality.

Portable mid-Infrared spectroscopy  used to identify aflatoxins in Peanuts © nancy10-chronicles-stock.adobe.com

Researchers have developed a portable mid-infrared (IR) spectroscopic method combined with chemometric analysis to rapidly and non-destructively detect aflatoxin contamination in Aspergillus-infected peanuts. This approach offers a field-deployable alternative to traditional wet chemistry methods, with high sensitivity and specificity in identifying toxic metabolites such as aflatoxins.