Application Notes: Atomic Spectroscopy

i1-762602-1408612894637.jpg

The Optima 8x00 ICP-OES series utilizes the new Flat Plate plasma technology that replaces the traditional helical coil design used since the inception of the inductively coupled plasma. The Flat Plate plasma technology, as seen in Figure 1, utilizes two flat induction plates to produce a plasma that is compact, dense, and robust. This plasma utilizes about half the argon required by previous helical coil designs while still delivering exceptional analytical performance.

i4-739853-1408616922163.gif

Building on more than 10 years of Micro-XRF experience, the Orbis spectrometer yields a system with excellent Micro-XRF capability while setting a new standard in analytical flexibility. The Orbis incorporates a unique motorized turret integrating video and X-ray optics allowing coaxial sample view and X-ray analysis. The turret can accommodate two additional collimators along with the X-ray optic for a total of three X-ray beam sizes to expand the Orbis analytical capabilities beyond traditional Micro-XRF analysis. Primary beam filters can be used with all spot sizes available on the turret to allow true XRF analytical capabilities in a micro-spot analysis. The working distance is increased to allow analysis over rougher sample topography without sacrificing signal intensity.

Atomic absorption (AA) is a mature technique, but many laboratories are still finding room for innovation and continued success with it. Joining us for this discussion are Charles A. Schneider, PerkinElmer, Inc., and Fergus Keenan, Thermo Fisher Scientific.

i4-688562-1408640621657.jpg

Building on more than 10 years of Micro-XRF experience, the Orbis spectrometer yields a system with excellent Micro-XRF capability while setting a new standard in analytical flexibility.

The analysis of toy samples for toxic trace elements has been undertaken for many years. However, a number of recent cases of toys contaminated with heavy metals has attracted global media attention. This has resulted in an increase in the number of toy manufacturers performing their own 'in-house' testing. This 'in-house' testing is not only to ensure regulatory compliance; it is also proving significantly more cost effective than outsourcing the analysis.

i4-581418-1408660923353.jpg

Global warming is seen as a growing problem across the world. One of the major contributing factors to global warming is greenhouse gas emissions and particulates emitted from automobiles. In an attempt to control the particulate emissions from motor vehicles, limits have been placed on the amount of elements such as Sulfur allowed in automotive fuels. Currently in the US, the EPA tier 2 regulations have set the limit for S in road fuels (Gasoline, Diesel and Biodiesel) at 150 ppm.

i1-581369-1408661117285.jpg

It is shown that the Retsch CryoMill polymers are ground to a significantly smaller fineness compared to other methods. Especially for inhomogeneous materials, small particles are the key for a high reproducibility.

i4-581417-1408660926475.jpg

Building on more than 10 years of Micro-XRF experience, the Orbis spectrometer yields a system with excellent Micro-XRF capability while setting a new standard in analytical flexibility. The Orbis incorporates a unique motorized turret integrating video and X-ray optics allowing coaxial sample view and X-ray analysis. The turret can accommodate two additional collimators along with the X-ray optic for a total of three X-ray beam sizes to expand the Orbis analytical capabilities beyond traditional Micro-XRF analysis. Primary beam filters can be used with all spot sizes available on the turret to allow true XRF analytical capabilities in a micro-spot analysis. The working distance is increased to allow analysis over rougher sample topography without sacrificing signal intensity.

The availability of new silicon drift detectors (SDD) allows for more precise measurements in less acquisition time. SDDs are often praised for their excellent energy resolution, but it is their increased throughput that make them ideal for many industrial applications. Due to the detector's smaller capacitance, a much shorter peaking time is used in the shaping amplifier without sacrificing resolution. This dramatically increases the throughput of the system. Compared with a conventional Si-PIN detector where the peaking time is as long as 25 ms, the drift detector operates at 1.6 ms, thereby increasing throughput from 10,000 counts per second to over 100,000. This advantage can be used in two primary ways.