February 13th 2025
Researchers at Zhengzhou Police University have developed an AI-powered Raman spectroscopy method that achieves 100% accuracy in identifying plastic beverage bottles.
February 10th 2025
Combining Raman Spectroscopy and Differential Scanning Calorimetry
June 1st 2009Raman spectroscopy and differential scanning calorimetry (DSC) are powerful techniques in their own right. Combining the two techniques allows one to combine the chemical and structural information of Raman with the temperature and energetic information of DSC. This allows us to develop a greater understanding of the material. Applications from polymeric and pharmaceuticals are discussed as examples of how this can help the analyst.
Raman Spectroscopy as a Rapid Characterization Tool for Heterogeneous Solids
June 1st 2009There are many situations in which it would be highly desirable to apply the benefits of Raman to larger volumes of solid material such as powders, tablets, and composites. Raman benefits such as minimal sample preparation, the ability to provide rich information on both organics and inorganics, and its ability to measure through glass and plastic packaging make it highly amenable to these kinds of samples.
Surface-Enhanced Raman Spectroscopy: A New Approach to Rapid Identification of Intact Viruses
July 1st 2008Surface-enhanced Raman spectroscopy (SERS) has experienced an explosive resurgence in interest lately. Development of reproducible, spatially uniform SERS-active substrates has made this technique an attractive approach for identification of Raman-active compounds and biological materials including toxins, intact viruses, and intact bacterial cells–spores...
Advantages and Limitations of Modular Fiber Optics–Based Low-Resolution Raman Spectroscopy Systems
June 1st 2008Raman spectroscopy is going through a major revolution with the continuous introduction of new fiber-based modular systems for low-resolution applications. More and more scientists are discovering what Raman spectroscopy can do for their research, education, and commercial applications thanks to the low costs and flexibility this new technology is providing. New applications and prospects are presented each day, and it is important to understand the advantages and limitations that this user-friendly analytical technique can provide to address these opportunities with a scientific approach.
From Tablets to Teeth: Complete Raman Imaging
June 1st 2008Raman imaging has moved on. It is now possible to capitalize on the wealth of information available from a Raman spectrum by imaging materials over large areas, with the spatial resolution, spectral resolution, and laser excitation parameters tailored to suit each application. Raman experiments and images from a diverse range of samples are presented.
A New Forensic Tool for Chemical Identification: Raman Microscopy
June 1st 2008Chemical analysis in the forensic field is different in many aspects from other areas of analysis. The ultimate goal is to identify the sources of evidence, often by matching chemical composition. In this regard, identifying minor elements or trace impurities is as important as identifying main ingredients. In some cases, identifying minor and trace components can be critical to determining that material collected at the site of a crime is identical to material collected in a suspect's environment. In other cases, full identification of trace evidence can be important. Raman microscopy is capable of providing both types of information on minute amounts of material.
SERS Comes of Age for Molecular Detection
June 1st 2008Since it was first described in 1974, surface-enhanced Raman spectrometry (SERS) has been thought to offer significant potential for a range of different applications. The theoretical sensitivity and specificity envisaged for this powerful technique has engaged scientists for many years, but practical challenges have hindered its routine adoption. Now, a new approach combines a robust and reliable substrate with expertise in surface chemistry and molecular biology on a platform that can be adapted for a wide variety of Raman instrumentation and customized routine applications.
Automated Confocal Raman and Atomic Force Microscopy Imaging of Nanostructured Materials and Devices
June 1st 2008The combination of confocal Raman and atomic force microscopes allows chemical and surface topography imaging of large samples without any ongoing process control by an operator. This article describes the relevant measurement principles and presents examples of automated measurements on nanostructured materials.
Market Profile: Portable and Handheld Raman
June 1st 2008The continuing pace of technological advancements in scientific instruments has recently led to a wide range of commercially viable portable and handheld instruments, and the Raman spectroscopy market is no exception. While security applications have received much of the early attention in relation to handheld instruments, other applications are beginning to replace demand from the security markets.
Raman Applications That Are Driving a Rapidly Expanding Market
March 1st 2008Chemical analysts who use spectroscopy to extract molecular information from samples have been following the developments in Raman instrumentation. Vibrational spectroscopy provides detailed molecular information, but Fourier-transform IR has been much easier to use than Raman. Now that Raman equipment is smaller, cheaper, faster, and easier, analysts are interested. Columnist Fran Adar will discuss why.
Early Detection of Gastric Cancer Using Wavelet Feature Extraction and Neural Network
November 1st 2007A new method for the early detection of gastric cancer uses a combination of feature extraction based upon continuous wavelets for Fourier transform-infrared spectroscopy (FT-IR) and classification using an artificial neural network trained with a back-propagation algorithm.
Raman Micro Imaging - What Was a Concept in 1975 Is Now a Reality
November 1st 2007Raman microscopy was developed as a tool for microanalysis complementary to the electron microscope, which enabled identification of the elements in a microspot. The first realization for Raman imaging was implemented using a nonconfocal optical method. Subsequently, a confocal scheme was developed, which provided better contrast in the Raman image. A number of successful examples from pathology, pharmaceutical analysis, and geology will be shown.
Time-Gated Confocal Raman Microscopy
October 1st 2007Raman microspectroscopy is a powerful tool for noninvasive chemical analysis of tissues, cells, and cellular structures. To achieve the highest signal-to-noise ratio and fidelity of Raman spectra, the background must be minimized. The difference in temporal dependence of Raman and fluorescence signals can be used for very effective discrimination. A careful system design, based upon the employment of very efficient Kerr-gating materials, makes confocal Raman microscopy possible with significantly shorter acquisition times. The new instrument is tested for a variety of biomedical systems. The possible applications are outlined together with the routes for further improvement.
Raman Spectroscopy of Conformational Changes in Membrane-Bound Sodium Potassium ATPase
February 1st 2007In this investigation the authors assess the potential of Raman spectroscopy as a tool for probing conformational changes in membrane-spanning proteins - in this case, the sodium potassium adenosine triphosphatase (Na+,K+-ATPase).
Raman Spectroscopy for Cancer Diagnosis
November 1st 2006November 2006. Raman spectroscopy is a promising new tool for noninvasive, real-time diagnosis of tissue abnormalities. Here, we show evidence of its application for cancer diagnosis in four distinct tissue types: skin, breast, gastrointestinal tract, and cervix. Multivariate statistical analysis and discrimination algorithms allow for automated classification of the spectra into clinically relevant pathological categories using histology as a gold standard. Although limitations exist, the technique shows every indication of being an exciting prospect in the management of cancer in a clinical setting.
Chemically Selective Imaging with Broadband CARS Microscopy
September 1st 2006September 2006. The authors rapidly acquire complete vibrational spectra in the fingerprint region using a single femtosecond laser for broadband coherent anti-Stokes Raman scattering (CARS) microscopy to image spatially variant compositions of condensed-phase samples.