May 5th 2025
A new comprehensive review explores how wearable plasmonic sensors using surface-enhanced Raman spectroscopy (SERS) are changing the landscape for non-invasive health monitoring. By combining nanotechnology, AI, and real-time spectroscopy analysis to detect critical biomarkers in human sweat, this integration of nanomaterials, flexible electronics, and AI is changing how we monitor health and disease in real-time.
A Newcomer’s Guide to Using Surface Enhanced Raman Scattering
April 1st 2020The SERS signal arises from the combination of the number of molecules, the polarizability or cross-section of the molecule, and the electric field experienced by the molecules. Understanding how these variables interact to generate the SERS response is the key to applying SERS accurately.
Biomedical Raman Imaging 2019 in Osaka
April 1st 2020Recent technical advances in biomedical Raman imaging pave a way to its application in the biomedical fields, where morphological information of samples provides rich information. A recent technical conference in Osaka, Japan, explored these developments.
Effect of Layer Number and Crystal Stacking Orientation on the Raman Spectra of Two-Dimensional MoS2
March 1st 2020Raman imaging provides detailed crystal orientation information for two-dimensional MoS2 prepared by chemical vapor deposition on silicon substrates. These two-dimensional crystals consist of individual atomic layers of sulfur, molybdenum, and sulfur atoms.
Introduction to the Raman Spectroscopy Terminology Guide
February 1st 2020The Raman Terminology Guide you now have before you is a comprehensive set of definitions for topics of interest to molecular spectroscopists and those specifically using Raman spectroscopy in their daily work. This guide includes the types of Raman spectroscopy techniques and many terms related to the applications of Raman spectroscopy instruments. This terminology guide includes definitions for more than 250+ molecular spectroscopy terms in sufficient detail to provide readers with a reasonable understanding of the concepts covered.
Raman Analysis of Ethylene Vinyl Acetate Copolymers–Using 2D-COS for Identifying Structural Changes
November 1st 2019Raman 2D-COS spectral data provide information on conformational changes of polymers. Here, Raman spectra of ethylene vinyl acetate and vinyl acetate copolymer are measured and interpreted, enabling a description of morphological changes related to the vinyl acetate group.
Screening Affinity Agents for Use with SERS
October 3rd 2019Christy L. Haynes, of the University of Minnesota (Minneapolis and Saint Paul, Minnesota), has been working with her research team to explore the use of a rapid and facile technique to empirically screen affinity agents of diverse compositions for all manner of targets. Here, she describes the advantages of using isothermal titration calorimetry (ITC) for screening of polymer affinity agents for use with surface-enhanced Raman scattering (SERS).
Using Reference Materials, Part II: Photometric Standards
October 1st 2019Alignment of the instrument y-axis is a critical step for quantitative and qualitative measurements using spectroscopy. Here, we explain in detail how to use photometric standards for ultraviolet, visible, near infrared, infrared, and Raman spectroscopy.
Developing Spectroscopy Instruments for Use in Extreme Environments
September 13th 2019Spectroscopy can be difficult to carry out outside a controlled laboratory environment. Imagine, then, the hurdles that would accompany performing spectroscopy in the extreme conditions of deep space or the ocean floor. Mike Angel, a professor of chemistry at the University of South Carolina, has taken on those challenges, working on new types of instruments for remote and in- situ laser spectroscopy, with a focus on deep-ocean, planetary, and homeland security applications of deep ultraviolet Raman, and laser-induced breakdown spectroscopy to develop the tools necessary to work within these extreme environments.
Stress, Strain, and Raman Spectroscopy
September 1st 2019When stress is applied to an object, it can produce strain. Strain can be detected through changes in peak position and bandwidth in Raman spectra. Here, we show examples of how strain in technologically important materials appears in the Raman spectra.
Spectroscopy Magazine Announces the 2019 Emerging Leader in Molecular Spectroscopy
June 17th 2019Ishan Barman, PhD, an assistant professor at Johns Hopkins University, has won the 2019 Emerging Leader in Molecular Spectroscopy Award, which is presented by Spectroscopy magazine. This annual award recognizes the achievements and aspirations of a talented young molecular spectroscopist, selected by an independent scientific committee. The award will be presented to Barman at the SciX 2019 conference in October, where he will give a plenary lecture and be honored in an award symposium.
Advancing Biomedical Research with New Infrared and Raman Microscopy Techniques
June 10th 2019Significant progress is being made to harness the power of spectroscopy technique for medical research. An ongoing challenge, and area of development, in this effort, is to “see” more and more detail about biological activity, even within individual cells. Ji-Xin Cheng, a professor of biomedical engineering at Boston University, is advancing such work, by developing techniques like midinfrared photothermal (MIP) imaging and Raman spectromicroscopy. Cheng is the 2019 winner of the Ellis R. Lippincott Award, which is awarded annually by the Optical Society, the Coblentz Society, and the Society for Applied Spectroscopy, to an individual who has made significant contributions to the field of vibrational spectroscopy. Here, Cheng speaks to us about those techniques.
Criteria for High-Quality Raman Microscopy
June 1st 2019Five key qualitative factors–speed, sensitivity, resolution, modularity and upgradeability, and combinability–contribute to the quality of confocal Raman imaging microscopes. Using application examples, this article introduces modern Raman imaging and correlative imaging techniques, and presents state-of-the-art practice examples from polymer research, pharmaceutics, low-dimensional materials research, and life sciences.
Rapid, Portable Pathogen Detection with Multiplexed SERS-based Nanosensors
June 1st 2019A new application of surface-enhanced Raman spectroscopy (SERS) is described for quantifying low concentrations of pathogens with high reproducibility. In this novel assay, bacteria are captured and isolated using functionalized metal nanoparticles for rapid optical identification via SERS. Initial tests with a portable SERS system validated the ability to identify the presence of Escherichia coli and methicillin-resistant Staphylococcus aureus bacteria.
Characterizing Microplastic Fibers Using Raman Spectroscopy
June 1st 2019In this study, macro- and microscopic Raman spectroscopy were used to identify different commercial microplastic fibers using measured spectra with database searches. Raman microscopy is demonstrated as a powerful technique for microplastic fiber characterization, especially for samples that contain mixtures of components, including multiple polymers, or additives.
Heterocorrelation Using Polarized Raman Spectra in the Characterization of Polymers
November 1st 2018Spectral changes revealed by two-dimensional correlation spectroscopy can be used to interpret structural changes in polymers determined by processing conditions, so that materials can be rationally engineered for particular applications with known mechanical requirements.
Detecting Pathogenic Mycoplasmas with Surface-Enhanced Raman Spectroscopy
March 1st 2018Duncan C. Krause, of the Department of Microbiology at the University of Georgia, discusses his group’s work to establish a SERS method with silver nanorod-array substrates for detecting the pathenogenic mycoplasma that causes bronchitis and pneumonia.
Advancing Forensic Analyses with Raman Spectroscopy
March 1st 2018Igor K. Lednev, of the Department of Chemistry at the University at Albany, the StateUniversity of New York, has been developing the use of Raman spectroscopy for a varietyof forensic applications, including determining the age of blood stains and linking gunshot residues to specific ammunition–firearm combinations.
Understanding Emerging Biopolymers with 2D Raman Correlation Spectroscopy
November 9th 2017Two-dimensional (2D) Raman correlation spectroscopy is a powerful analytical technique for analyzing a system under the influence of an external perturbation. Isao Noda, of the Department of Materials Science and Engineering, at the University of Delaware and Danimer Scientific, has been developing 2D Raman correlation spectroscopy and applying it to the study of various materials, including exciting new biopolymers. He recently spoke to us about this work.
Raman Microscopy Combined with Tensile Deformation for Understanding Changes in Polymer Morphology
November 1st 2017We show Raman spectra of polymeric fibers acquired as a function of increasing stress and temperature. With knowledge of Raman band assignments, it becomes possible to understand, in detail, the molecular changes that are responsible for polymer orientation and crystallization.
The Effect of Microscope Objectives on the Raman Spectra of Crystals
September 1st 2017The Raman spectra of a particular face of a single crystal can be significantly different if acquired with different microscope objectives. This article explains the underlying physics of changes in relative intensity and even peak position of certain Raman bands depending on the microscope objective used to acquire the spectrum.
Trace-Level Detection of Explosives Using Sputtered SERS Substrates
June 1st 2017This study explores the use of a novel SERS substrate that can enhance the Raman signals of explosives that are present in picogram quantities in neat solutions using a visible laser wavelength and a compact Raman instrument.