April 29th 2025
New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Analysis of FDA Infrared 483 Citations: Have You a Data Integrity Problem?
September 1st 2019Analysis of FDA Form 483 observations and warning letters for infrared spectrometers reveals a range of data integrity problems and a lack of laboratory procedures for the technique. Is your laboratory in the same situation?
Advancing Biomedical Research with New Infrared and Raman Microscopy Techniques
June 10th 2019Significant progress is being made to harness the power of spectroscopy technique for medical research. An ongoing challenge, and area of development, in this effort, is to “see” more and more detail about biological activity, even within individual cells. Ji-Xin Cheng, a professor of biomedical engineering at Boston University, is advancing such work, by developing techniques like midinfrared photothermal (MIP) imaging and Raman spectromicroscopy. Cheng is the 2019 winner of the Ellis R. Lippincott Award, which is awarded annually by the Optical Society, the Coblentz Society, and the Society for Applied Spectroscopy, to an individual who has made significant contributions to the field of vibrational spectroscopy. Here, Cheng speaks to us about those techniques.
The Use of Portable Near-Infrared Spectroscopy for Authenticating Cardiovascular Medicines
May 1st 2019Portable NIR spectroscopy is demonstrated as a rapid and mobile analysis method for authenticating cardiovascular medicines in critical situations, and to indicate whether formulations are counterfeit or substandard.
The C=O Bond, Part VII: Aromatic Esters, Organic Carbonates, and More of the Rule of Three
September 1st 2018Aromatic esters follow the ester Rule of Three, but each of these three peak positions is different for saturated and aromatic esters, which makes them easy to distinguish. Organic carbonates are structurally similar to esters and follow their own Rule of Three.
The Carbonyl Group, Part V: Carboxylates—Coming Clean
May 1st 2018Carboxylates are made by reacting carboxylic acids with strong bases such as inorganic hydroxides. Carboxylates contain two unique carbon–oxygen “bond and half” linkages that coordinate with a metal ion to give two strong infrared peaks, which make them easy to see.
The C=O Bond, Part II: Aldehydes
November 1st 2017Aldehydes feature a unique “lone hydrogen” atom, giving rise to unique C-H stretching and bending peaks, making them easy to spot. In this installment, a new feature is also presented, “IR Spectral Interpretation Review,” where key concepts from past columns are presented for those new to the column and for readers who need a refresher.
Detecting Blood on Fabrics: Infrared Diffuse Reflectance Versus Attenuated Total Reflectance FT-IR
August 14th 2017In forensic science, the detection of blood on fabric is a very useful tool. Therefore, it is important that the methods used for detecting blood be as accurate as possible. Michael L. Myrick and Stephen L. Morgan, both professors in the Department of Chemistry and Biochemistry at the University of South Carolina, have been investigating the use of infrared (IR) spectroscopy for this purpose, including comparing the effectiveness of infrared diffuse reflectance versus attenuated total reflectance Fourier-transform IR (ATR FT-IR). They recently spoke to Spectroscopy about their recent studies and the critical questions they have been addressing in how IR spectroscopy is used in forensic science.
Tracking Microplastics in the Environment via FT-IR Microscopy
August 1st 2017Microplastics from clothing, abrasive action on plastics, or engineered microbeads as found in some exfoliating cosmetics are showing up in many environmental systems. FT-IR microscopy is a useful tool in the analysis of microplastics, providing visual information, particle counts, and particle identification.
New Developments in 2D IR Advance Medical Research and Materials Analysis
May 10th 2017Coherent two-dimensional infrared spectroscopy (2D IR) uses a series of IR femtosecond laser pulses to pump and then probe the response of a system, making it possible to learn much more about the structure and dynamics of molecules than can be seen with one-dimensional IR spectroscopy. The technique’s inventor, Martin T. Zanni of the University of Wisconsin-Madison, discussed 2D IR in a 2013 interview in Spectroscopy (1). Since 2013, Zanni has applied 2D IR spectroscopy to new systems and has started a company, PhaseTech Spectroscopy, Inc., to commercialize the technique.
The C-O Bond, Part I: Introduction and the Infrared Spectroscopy of Alcohols
January 1st 2017We now turn our attention to the C-O bond, how to detect its presence in a sample from an infrared (IR) spectrum, and a study of the functional groups that contain this bond. In this first installment on the topic, we study the spectra of alcohols and learn to distinguish primary, secondary, and tertiary alcohols from each other based on their infrared spectra.
FT-IR Microscopy with High Spatial Resolution
December 1st 2016Advances in spatial resolution for Fourier transform infrared (FT-IR) imaging historically have involved the use of a synchrotron source, but new optics have been developed that yield better spectral quality and spatial resolution than are provided by existing synchrotron sources. Kathleen Gough, Professor in the Department of Chemistry at the University of Manitoba, has been working with her group to conduct diagnostic tissue imaging with the new thermal source FT-IR system. She recently spoke to us about these efforts.
The Infrared Spectroscopy of Alkenes
November 1st 2016Now that we have completed our discussion of benzene rings and the infamous “benzene fingers,” the next topic on our hydrocarbon hit parade are carbon-carbon double and triple bonds. C=C bonds, otherwise known as alkenes, come in six different structural isomer types, while triple bonds, known as alkynes, come in two varieties. This column provides you with all the tools you need to distinguish all of these different types of molecules from each other.
New Devices in the Infrared Provide Sensitivity, Speed, and Size Improvements
October 1st 2016Infrared reflectance and absorption spectroscopy have been practiced for decades. New capabilities in detectors and light sources are quickly changing the landscape in the near- and mid-infrared, where fundamental vibrations and overtone bands allow sensitive measurements in applications related to food safety, precision agriculture, energy, and smart manufacturing, to name a few. This article outlines some of the most recent innovations and how they might be applied in real-world systems.