Molecular Spectroscopy

Latest News


Low frequency Raman scattering measurements can be used to predict physical properties of polymers and the crystalline polymorphic form of active pharmaceutical ingredients (APIs). These measurements are made by recording the Stokes and anti-Stokes side of the laser line with the laser centered on the detector. Spectra of polyethylene and linear alkanes were recorded down to 4 cm-1.

In general, many Raman measurements suffer from fluorescence, which forces the use of longer excitation wavelength (lower photon energy) lasers to prevent the fluorescence signal from overwhelming the Raman signal. However, this results in reduced sensitivity of low-cost silicon CCD detectors at higher wavenumbers, making it difficult (or impossible) to observe the “stretch” portion of the Raman spectra.

The Oxigraf state-of-the-art Oxygen Deficiency Monitor, the Model O2iM, is a responsive, accurate, and reliable safety monitor for oxygen displacement monitoring in quantum computer laboratory, MRI, NMR, and liquid nitrogen and helium storage facilities. Our reliable solid-state sensor does not require routine maintenance or factory calibration, and the O2iM is equipped with an automatic, programmable auto-calibration system. The system easily interfaces with alarm system and building management systems.

Fujita_web.jpg

In the past decades, we have witnessed the evolution of imaging technologies based on vibrational spectroscopy. In particular, the technical developments in Raman, coherent anti-Stokes Raman spectroscopy (CARS), and stimulated Raman scattering (SRS) microscopy allow researchers to gain new insights in biological, medical, and pharmaceutical studies.

RichardCrocombe_web.jpg

Portable spectroscopic instruments have not had significant visibility within the scientific community compared with, for instance, the current generation of high-performance laboratory mass spectrometers.