October 14th 2024
A recent study published in Sustainability highlighted the utility of Raman spectroscopy in the development of digital agriculture.
Non-Destructive FT-IR Measurements via Diffuse Reflection Sampling
February 1st 2021For analysis of non-particulate solids, the diffuse reflection sampling technique may offer an easy, non-destructive method for mid-infrared measurements. Spectral results of a polypropylene face mask collected via diffuse reflection and attenuated total reflection (ATR) were compared.
Raman Imaging for the Analysis of Food Products
February 1st 2021Confocal Raman microscopy is a powerful tool for analyzing the chemical composition of samples on the submicrometer scale. In the food industry, various ingredients, additives, and bio-polymers (such as emulsifiers, stabilizers, carbohydrates, or thickeners) are commonly used to optimize the texture or the flavor of food. The distribution and microstructure of the ingredients strongly influence the properties of the final product. Therefore, research and development, as well as quality control, require powerful analytical tools for studying the distribution of compounds in food. Raman imaging has proven to be an effective and versatile technique for food analysis (1,2).
Raman measurements of chromite minerals demonstrated that chromium content could be accurately determined, supporting a possible application of portable Raman devices on Earth or in space for mineral analysis of asteroids and planets.
Assignment of Raman Bands of a Set of Biopolymers with Small Increases in an Added Functional Group
February 1st 2021Raman spectra were measured in combination with 2D-COS analysis to understand how the addition of propyl side groups to a biopolymer backbone influences the structure of the polymer at the atomic level.
Using Raman Spectroscopy for the Characterization of Zeolite Crystals
January 1st 2021Zeolites are the most-used catalyst in industry. Synthesizing tailor-made zeolites is hampered by a poor understanding of how zeolite crystals actually form in solution. Scott M. Auerbach of the University of Massachusetts at Amherst is addressing this challenge with Raman spectroscopy.
Atline Analysis of Commercial Graphene Products with Raman Spectroscopy
November 1st 2020Graphene exhibits special properties, such as high strength and high electrical and thermal conductivity and as such is highly desirable for key electronic components. A new Raman spectroscopy sampling technique has been applied to the characterization of batches of graphene that provides a simple, at-line method for obtaining key product data.
Making Industrial Raman Spectroscopy Practical
November 1st 2020Raman spectroscopy is a valuable process analytical technology (PAT) for many applications across multiple industries, as a result of its many advantages, such as molecular specificity, ability to be directly coupled to a reaction vessel, and compatibility with solids, liquids, gases, and turbid media.
Raman Spectroscopy: Bringing Inline Analysis to Production
November 1st 2020New Raman spectroscopy applications are emerging in non-traditional fields because of advances in easy-to-use commercial Raman spectroscopy instrumentation. With improvements in lasers, optics, and detectors, Raman spectroscopy has developed into a powerful measurement solution for manufacturing and quality control applications.
Very Low Frequency Measurements of Linear Alkanes
November 1st 2020Low frequency Raman scattering measurements can be used to predict physical properties of polymers and the crystalline polymorphic form of active pharmaceutical ingredients (APIs). These measurements are made by recording the Stokes and anti-Stokes side of the laser line with the laser centered on the detector. Spectra of polyethylene and linear alkanes were recorded down to 4 cm-1.
SAS Meggers Award: Analyzing Soil and Meat with Shifted Excitation Raman Difference Spectroscopy
October 29th 2020Spectroscopy Magazine sat down with Kay Sowoidnich to talk about how his group has demonstrated the potential of shifted-excitation Raman difference spectroscopy (SERDS) as an efficient tool for soil nutrient analysis.
How Does Concatenation Enhance Raman Spectroscopy?
September 1st 2020In general, many Raman measurements suffer from fluorescence, which forces the use of longer excitation wavelength (lower photon energy) lasers to prevent the fluorescence signal from overwhelming the Raman signal. However, this results in reduced sensitivity of low-cost silicon CCD detectors at higher wavenumbers, making it difficult (or impossible) to observe the “stretch” portion of the Raman spectra.
Quantum Computer Helium Laboratory Oxygen Deficiency Monitor O2iM from Oxigraf
September 1st 2020The Oxigraf state-of-the-art Oxygen Deficiency Monitor, the Model O2iM, is a responsive, accurate, and reliable safety monitor for oxygen displacement monitoring in quantum computer laboratory, MRI, NMR, and liquid nitrogen and helium storage facilities. Our reliable solid-state sensor does not require routine maintenance or factory calibration, and the O2iM is equipped with an automatic, programmable auto-calibration system. The system easily interfaces with alarm system and building management systems.
The 2020 Emerging Leader in Molecular Spectroscopy Award
September 1st 2020Markita Landry, the winner of the 2020 Emerging Leader in Molecular Spectroscopy Award, works at the intersection of single-molecule biophysics and nanomaterial-polymer science to develop new tools for understanding biological systems.
A Further Leap of Biomedical Raman Imaging
July 1st 2020In the past decades, we have witnessed the evolution of imaging technologies based on vibrational spectroscopy. In particular, the technical developments in Raman, coherent anti-Stokes Raman spectroscopy (CARS), and stimulated Raman scattering (SRS) microscopy allow researchers to gain new insights in biological, medical, and pharmaceutical studies.
Combining Spectroscopy with Microscopy for Advancing the Analysis of Forensically Relevant Traces
July 1st 2020Forensic traces are physical remnants of past events that provide critical information for criminal and civil investigations and adjudications. The scientific examination of traces is an incredibly valuable tool for forensic investigations, because the skilled interpretation of traces yields factual answers to a range of pertinent questions.